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Abstract. The rare decay B+ → D+
s φ can occur only via annihilation-type diagrams in the standard

model. We calculated this decay in the perturbative QCD approach with Sudakov resummation. We found
that the branching ratio of B+ → D+

s φ is of order 10−7; this may be measured in the near future by
the KEK and SLAC B factories. The small branching ratio predicted in the standard model makes this
channel sensitive to new physics contributions.

1 Introduction

Rare B decays are useful for tests of the standard model
(SM). They are sensitive to new physics contributions,
since their branching ratios in SM are small. Some of
them have already been measured by the CLEO and B
factories in KEK and SLAC. Most of them are still un-
der study from both the experimental and the theoretical
side. Among them, the inclusive or semi-inclusive decays
are clean in theory, but with more uncertainty in experi-
mental study. On the other hand, the exclusive decays are
difficult as regards precise theoretical predictions but eas-
ier as regards experimental measurement. The study of ex-
clusive rare B decays requires knowledge of hadronization,
which is non-perturbative. The generalized factorization
approach has been applied to the theoretical treatment of
non-leptonic B decays for some years [1]. It is a great suc-
cess in explaining many decay branching ratios [2,3]. The
factorization approach is a rather simple method. Some
efforts have been made to improve their theoretical appli-
cations [4] and to understand the reason why the factoriza-
tion approach has worked well [5,6]. One of these methods
is the perturbative QCD approach (PQCD), where we can
calculate the annihilation diagrams as well as the factor-
izable and non-factorizable diagrams.

The rare decay B+ → D+
s φ is a pure annihilation-

type decay. The four valence quarks in the final states
Ds and φ are different from the ones in the B meson,
i.e. there is no spectator quark in this decay. In the usual
factorization approach, this decay picture is described as b̄
and u quark in the B meson annihilating into the vacuum
and the Ds and φ meson being produced from the vacuum
afterwards. To calculate this decay in the factorization
approach, one needs the Ds → φ form factor at very large
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time-like momentum transfer O(MB). However the form
factor at such a large momentum transfer is not known in
the factorization approach. This makes the factorization
approach to the calculation of these decays unreliable.

In this paper, we will try to use the PQCD approach
to calculate this decay. The W boson exchange causes the
four quark operator transition b̄u → s̄c; the additional s̄s
quarks included in Dsφ are produced from a gluon. This
gluon attaches to any one of the quarks participating inW
boson exchange. This is shown in Fig. 1. In the rest frame
of the B meson, both s and s̄ quarks included in Dsφ have
O(MB) momenta, and the gluon producing them also has
momentum q2 ∼ O(M2

B). This is a hard gluon. One can
perturbatively treat the process where the four quark op-
erator exchanges a hard gluon with an ss̄ quark pair. This
is just the picture of the perturbative QCD approach [5,
6]. Furthermore, the final state of this decay is an isospin
singlet. It is proportional to the Vub transition. No Vcb
transition can contribute to it. Therefore there will not
be any dominant soft final state interaction contributions.
Unlike the B → KK decays (which may have a large con-
tribution from the final state interaction contribution) [7],
the decay B → Dsφ is a very clean channel for a test of
annihilation-type contributions.

In the next section, we will show the framework of
PQCD briefly. In Sect. 3, we give the analytic formulas
for the decay amplitude of B+ → D+

s φ decays. In Sect. 4,
we give the numerical results of the branching ratio from
the analytic formulas and discuss the theoretical errors.
Finally, we conclude this study in Sect. 5.

2 Framework

The PQCD approach has been developed and applied in
non-leptonic B meson decays [5–11] for some time. In this
approach, the decay amplitude is described by three scale
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Fig. 1a–d. Diagrams for B+ → D+
s φ decay. The factorizable diagrams a, b, contribute to Fa, and the non-factorizable ones c,

d to Ma

dynamics; soft (Φ), hard (H), and harder (C) dynamics.
It is conceptually written as the convolution

Amplitude ∼
∫

d4k1d4k2d4k3

× Tr
[
C(t)ΦB(k1)ΦDs

(k2)Φφ(k3)

× H(k1, k2, k3, t)
]
, (1)

where ki’s are the momenta of the light quarks included
in each of the mesons, and Tr denotes the trace over Dirac
and color indices. C(t) is the Wilson coefficient of the four
quark operator with the QCD radiative corrections. C(t)
includes the harder dynamics at a larger scale than MB

and describes the evolution of local 4-Fermi operators from
MW , W boson mass, down to a t ∼ O(MB) scale, which
results in large logarithms, ln(MW /t). H describes the
four quark operator and the quark pair from the sea con-
nected by a hard gluon whose scale is at the order of MB ,
and includes the O(MB) hard dynamics. Therefore, this
hard part H can be perturbatively calculated. t is cho-
sen as the largest energy scale in H, in order to lower
the α2

s corrections to the hard part H. ΦM is the wave
function which describes hadronization of the quark and
anti-quark into the meson M . While H depends on the
processes considered, ΦM is independent of the specific
processes. Determining ΦM in some other decays, we can
make quantitative predictions here.

We consider the B meson at rest for simplicity. It is
convenient to use the light-cone coordinates (p+, p−,pT)
to describe the meson’s momenta, where p± = (p0 ±
p3)/(21/2) and pT = (p1, p2). By these coordinates we
can take the B, Ds, and φ mesons momenta as P1 =
(MB/(21/2))(1, 1,0T), P2 = MB/(21/2)(1, r2,0T), and
P3 = (MB/(21/2)(0, 1 − r2,0T), respectively, where r =
MDs/MB and we neglect the square terms of the φ me-
son’s mass M2

φ. Putting the light spectator quark mo-
menta for B, Ds and φ mesons k1, k2, and k3, respectively,
we can choose k1 = (0, x1P

−
1 ,k1T), k2 = (x2P

+
2 , 0,k2T)

and k3 = (0, x3P
−
3 ,k3T). Then, integration over k−

2 , k
+
3

and k+
1 in (1) leads to

Amplitude ∼
∫

dx1dx2dx3b1db1b2db2b3db3

× Tr
[
C(t)ΦB(x1, b1)ΦDs(x2, b2)

× ×Φφ(x3, b3)H(xi, bi, t)e−S(t)
]
, (2)

where bi is the conjugate space coordinate of kiT. The
last term, e−S , contains two kinds of logarithms. One of
the large logarithms is due to the renormalization of the
ultraviolet divergence ln tb, which describes the QCD run-
ning between scale t and 1/b. The other is from the double
logarithm due to soft gluon corrections. This double loga-
rithm, called the Sudakov form factor, suppresses the soft
dynamics effectively [12]. Thus it makes a perturbative
calculation of the hard part H applicable at the inter-
mediate scale, i.e., the MB scale. We calculate the H for
B+ → D+

s φ decay in the first order in an αs expansion
and give the convoluted amplitudes in the next section.

In order to calculate analytic formulas of the decay
amplitude, we use the wave functions ΦM,αβ decomposed
in terms of the spin structure. As a heavy meson, the B
meson wave function is not well defined. It is also pointed
out in the recent discussion of the B meson wave function
in [13] that there is no constraint on the B meson wave
function if three-parton wave functions are considered. To
be consistent with previous calculations [5,6,11], we fol-
low the same argument that the structure (γµγ5)αβ and
γ5αβ components make the dominant contribution in the
B meson wave function. Then ΦM,αβ is written

ΦM,αβ =
i√
2Nc

{
(�PMγ5)αβφAM + γ5αβφ

P
M

}
, (3)

where Nc = 3 is the color degree of freedom, PM is the
corresponding meson’s momentum, and φA,P

M are Lorentz
scalar wave functions. As heavy quark effective theory
leads to φPB 	 MBφ

A
B , the B meson’s wave function can

be expressed by

ΦB,αβ(x, b) =
i√
2Nc

[�P1 +MB ] γ5αβφB(x, b). (4)

According to [14], a pseudo-scalar meson moving fast
is parameterized by Lorentz scalar wave functions, φ, φp,
and φσ as follows:

〈D−
s (P )|s̄(z)γµγ5c(0)|0〉

	 −ifDsPµ

∫ 1

0
dxeixPzφ(x), (5)

〈D−
s (P )|s̄(z)γ5c(0)|0〉

= −ifDsm0Ds

∫ 1

0
dxeixPzφp(x), (6)

〈D−
s (P )|s̄(z)γ5σµνc(0)|0〉
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=
i
6
fDsm0Ds

(
1− M2

Ds

m2
0Ds

)
(Pµzν − Pνzµ)

×
∫ 1

0
dxeixPzφσ(x), (7)

where m0Ds = M2
Ds
/(mc +ms). We ignore the difference

between the c quark’s mass and Ds meson’s mass in the
perturbative calculation. This means MDs = m0Ds . In
this approximation, the contributions of (7) are negligible.
With the equation of motion (5) and (6), we are lead to

φp(x) = φ(x) +O
(

Λ̄

MDs

)
. (8)

Therefore the Ds meson’s wave function can be expressed
by one Lorentz scalar wave function,

ΦDs,αβ(x, b) =
i√
2Nc

[(γ5 �P2)αβ +MDsγ5αβ ]ΦDs(x, b).

(9)
The wave function ΦM for the M = B,Ds meson is nor-
malized by its decay constant fM :

∫ 1

0
dxΦM (x, b = 0) =

fM

2
√
2Nc

. (10)

In contrast to the B and Ds meson, for the φ meson,
being light, the σµναβ component remains. In B+ → D+

s φ
decay, the φmeson is longitudinally polarized. Then, the φ
meson’s wave function is parameterized by three Lorentz
structures:

Mφ �ε√
2Nc

Φφ(x3),
�ε �P3√
2Nc

Φt
φ(x3),

Mφ√
2Nc

Φs
φ(x3). (11)

In the numerical analysis we will use Φφ, Φt
φ and Φs

φ which
were calculated from QCD sum rules [16]. They will be
shown in Sect. 4.

3 Perturbative calculations

The effective Hamiltonian related to B+ → D+
s φ decay is

given by [15]

Heff =
GF√
2
V ∗
ubVcs [C1(µ)O1(µ) + C2(µ)O2(µ)] , (12)

O1 = (b̄γµPLs)(c̄γµPLu),
O2 = (b̄γµPLu)(c̄γµPLs), (13)

where C1,2(µ) are Wilson coefficients at the renormaliza-
tion scale µ. The projection operator is defined by PL =
1 − γ5. The lowest order diagrams contributing to B+ →
D+

s φ are drawn in Fig.1 according to this effective Hamil-
tonian. As stated above, B+ → D+

s φ decay only has an-
nihilation diagrams.

We get the following analytic formulas by calculating
the hard part H at first order in αs. Together with the

meson wave functions, the amplitude for the factorizable
annihilation diagram in Fig.1a and b leads to

Fa = 16πCF fBM
2
B

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3ΦDs

(x2, b2)

×
[{
x3Φφ(x3, b3) + r (2x3 − 1) rφΦt

φ(x3, b3)

+ r(1 + 2x3)rφΦs
φ(x3, b3)

}
Ef (t1a)ha(x2, x3, b2, b3)

−
{
x2Φφ(x3, b3) + 2r(1 + x2)rφΦs

φ(x3, b3)
}

× Ef (t2a)ha(x3, x2, b3, b2)
]
, (14)

where CF = 4/3 is the group factor of the SU(3)c gauge
group, and rφ = mφ/MB . The functions Ef , t1,2a , ha are
given in the appendix. Since we only include twist 2 and
twist 3 contributions in our PQCD approach, all the r2
and r2φ terms in the calculation are neglected for consis-
tence. The explicit form for the wave functions, ΦM , is
given in the next section. From (14), one can see that the
factorizable contribution Fa is independent of the B me-
son wave function, but proportional to the B meson decay
constant fB .

The amplitude for the non-factorizable annihilation di-
agram in Fig.1c and d is given by

Ma =
1√
2Nc

64πCFM
2
B

∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1db1b2db2φB(x1, b1)ΦDs

(x2, b2)

×
[{
x2Φφ(x3, b2) + r (x2 − x3) rφΦt

φ(x3, b2)

+ r (x2 + x3) rφΦs
φ(x3, b2)

}
× Em(t1m)h

(1)
a (x1, x2, x3, b1, b2)

−
{
x3Φφ(x3, b2)− r (x2 − x3) rφΦt

φ(x3, b2)

+ r (2 + x2 + x3) rφΦs
φ(x3, b2)

}
× Em(t2m)h

(2)
a (x1, x2, x3, b1, b2)

]
. (15)

Unlike the factorizable contribution Fa, the non-factoriz-
able annihilation diagrams involve all three meson wave
functions.

Thus, the total decay amplitude A and decay width Γ
for B+ → D+

s φ decay are given by

A = Fa +Ma, (16)

Γ (B+ → D+
s φ) =

G2
FM

3
B

128π
|V ∗

ubVcsA|2, (17)

where the overall factor is included in the decay width
with the kinematics factor.

The decay amplitude for the CP conjugated mode,
B− → D−

s φ, is the same expression as B+ → D+
s φ, just

replacing V ∗
ubVcs with VubV

∗
cs. Since there is only one kind

of CKM phase involved in the decay, there is no CP vi-
olation in the standard model for this channel. We thus
have Br(B+ → D+

s φ) = Br(B− → D−
s φ).
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4 Numerical results

In this section we show numerical results obtained from
the previous formulas. To begin, we give the branching
ratios predicted from the same parameters and wave func-
tions as are adopted in other works. Secondly, we discuss
the theoretical errors due to uncertainty of some parame-
ters.

For the B meson’s wave function, there is a sharp peak
at the small x region; we use

ΦB(x, b) = NBx
2(1−x)2 exp

[
−M

2
Bx

2

2ω2
b

− 1
2
(ωbb)2

]
, (18)

which is adopted in [5,6,11]. This choice of the B meson’s
wave function is almost a best fit from the B → Kπ, ππ,
πρ and πω decays. For the Ds meson’s wave function, we
assume the form to be as follows, leaving aDs

as a free
parameter:

ΦDs(x, b) =
3√
2Nc

fDsx(1− x){1 + aDs(1− 2x)}

× exp
[
−1
2
(ωDb)2

]
. (19)

This is a rather flat distribution function. Since the c
quark is heavier than the s quark, this function is peaked
at the c quark side, i.e. the small x region. The wave func-
tions of the φ meson are derived by the QCD sum rules
[16]:

Φφ(x) =
fφ

2
√
2Nc

6x(1− x), (20)

Φt
φ(x) =

fTφ

2
√
2Nc

{
3ξ2 + 0.21

(
3− 30ξ2 + 35ξ4

)

+ 0.69
(
1 + ξ ln

x

1− x

) }
, (21)

Φs
φ(x) =

fTφ

4
√
2Nc

{
3ξ

(
4.5− 11.2x+ 11.2x2)

+ 1.38 ln
x

1− x

}
, (22)

where ξ = 1− 2x. In addition, we use the following input
parameters:

MB = 5.279GeV, MDs = 1.969GeV,
mφ = 1.02GeV, (23)

fB = 190MeV, fφ = 237MeV, fTφ = 220MeV,

fDs = 241MeV, (24)
ωb = 0.4GeV, aDs = 0.3, ωD = 0.2GeV. (25)

With these values and (10) we get the normalization fac-
tor NB = 91.745GeV. Using the above fixed parame-
ters, we find that the factorizable annihilation diagram
contribution is dominant over the non-factorizable con-
tribution. The reason is that the Wilson coefficient in

the non-factorizable contribution Ma is C1(t), which is
smaller than the one in the factorizable contribution Fa,
a1 = C1/3 + C2. Although the real part of Ma is negli-
gible, the imaginary part of Ma is comparable with the
imaginary part of Fa; it is about 30% of the real part of
Fa.

The propagators of the inner quark and gluon in Fig. 1
are usually proportional to 1/xi. One may suspect that
these amplitudes are enhanced by the endpoint singular-
ity around xi ∼ 0. This can be explicitly found in (A.8)
and (A.9), where the Bessel function Y0 diverges at xi ∼ 0
or 1. However this is so in our calculation. First we intro-
duce the transverse momentum of the quark, such that the
propagators become 1/(xixj+k2

T). There is no divergence
at the endpoint region. Secondly, the Sudakov form factor
exp[−S] suppresses the region of small k2

T. Therefore there
is no singularity in our calculation. We also include the
threshold resummation in our calculation of factorizable
diagrams, which further suppresses the endpoint region
contribution [17]. The dominant contribution is not from
the endpoint region of the wave function. As a proof, in
our numerical calculations, for example, an expectation
value of αs in the integration for Fa and Ma results in
〈αs/π〉 	 0.1. Therefore, the perturbative calculations are
self-consistent.

Now we can calculate the branching ratio according to
(16) and (17). Here we use the CKM matrix elements [18]

|Vub| = 0.0036± 0.0010, |Vcs| = 0.9891± 0.016, (26)

and the life time for the B± meson is τB± = 1.65×10−12 s.
The predicted branching ratio is

Br(B+ → D+
s φ) = 3.0× 10−7. (27)

This is still far from the current experimental upper limit
[18]

Br(B+ → D+
s φ) < 3.2× 10−4. (28)

The branching ratios obtained from the analytic for-
mulas may be sensitive to various parameters, such as
the parameters in (25). Uncertainty of the predictions on
PQCD is mainly due to the meson wave functions. There-
fore it is important to give the limits of the branching
ratio when we choose the parameters to the appropriate
extent. The appropriate extent of ωb can be obtained from
calculation of the semi-leptonic decays [19] and the other
B → ππ, B → Kπ and B → ρπ, ωπ decays [5,6,11]:

0.35GeV ≤ ωb ≤ 0.45GeV. (29)

The change of value of ωb will not alter the result of Fa,
which is independent of the B meson wave function, but
will affect the value ofMa. We did not find any strict con-
straints for the Ds meson wave function in the literature.
In fact, a future study of B → Dsπ will do this job. At
present, aDs in the Ds meson wave function is a free pa-
rameter, and we take 0 ≤ aDs ≤ 1. Here we check the
sensitivity of our predictions on ωb and aDs within the
ranges stated above. The branching ratios normalized by
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the decay constants and the CKM matrix elements can
result in

Br(B+ → D+
s φ) = (3.0+2.4

−1.0)× 10−7 (30)

×
(

fB fDs

190MeV · 241MeV

)2 ( |V ∗
ub Vcs|

0.0036 · 0.9891
)2

.

Considering the uncertainty of fB , fDs
and |V ∗

ubVcs| et
cetera, the branching ratio of the B+ → D+

s φ decay is at
the order of 10−7. This may be measured by the current
B factory experiments in KEK and SLAC.

5 Conclusion

In two-body hadronic B meson decays, the final state
mesons are moving very fast, since each of them carries
more than 2GeV energy. There is not enough time for
them to exchange soft gluons. The soft final state interac-
tion is not important in the two-body B decays. This is
consistent with the argument based on color transparency
[20]. The PQCD with Sudakov form factor is a self-
consistent approach to the description of the two-body
B meson decays. Although the annihilation diagrams are
suppressed comparing to other spectator diagrams, their
contributions are not negligible in the PQCD approach [5,
6].

In this paper, we calculate the B+ → D+
s φ decay in

the PQCD approach. Since neither of the bottom quark or
the up quark in the initial B meson appeared in the final
mesons, this process occurs purely via annihilation type
diagrams. It is a charm quark (not an anti-charm quark)
in the final states, therefore the usual Vcb transition does
not contribute to this process. The final states are isospin
singlet. There should be no dominant final state interac-
tions through which other channels contribute. From our
PQCD study, the branching ratio of B+ → D+

s φ decay
is still sizable with a branching ratio around 10−7, which
may be measured in the current running B factories Belle,
BABAR or in LHC-B in the future. This may be one of the
channels to be measured in B decays via the annihilation-
type diagram. Whether the PQCD predicted branching
ratio is good enough to account for the B+ → D+

s φ decay
will soon be tested in the current or future experiments.

The small branching ratio (comparing to the already
measured other B decays) predicted in the SM, makes
this channel sensitive to any new physics contributions.
Since the CP asymmetry predicted for this channel in the
SM is zero, any non-zero measurement of CP asymmetry
will be a definite signal of new physics. We also notice
that the supersymmetric contribution will not enhance the
decay branching ratio significantly, but it may contribute
to a non-zero CP asymmetry in this channel, since the
supersymmetry couplings can introduce new phases.

Acknowledgements. We thank our PQCD group members:
Y.Y. Keum, E. Kou, T. Kurimoto, H.-n. Li, A.I. Sanda and
M.Z. Yang for fruitful discussions. The work is partly sup-
ported by National Science Foundation of China under Grant

No. 90103013 and 10135060 and by the Grant-in Aid for Spe-
cial Project Research (Physics of CP violation) of Japan.

Appendix A:

Some functions

The definitions of some functions used in the text are pre-
sented in this appendix. In the numerical analysis we use
the one-loop expression for the strong coupling constant:

αs(µ) =
4π

β0 log(µ2/Λ2)
, (A.1)

where β0 = (33−2nf )/3 and nf is number of active quark
flavors at the appropriate scale. Λ is the QCD scale, which
we take as 250MeV at nf = 4. We also use the lead-
ing logarithms expressions for the Wilson coefficients C1,2
presented in [15]. Then we put mt = 170GeV, mW =
80.2GeV, mb = 4.8GeV, and mc = 1.3GeV in the Wil-
son coefficients calculation.

The function Ef and Em are defined by

Ef (t) = [C1(t)/3 + C2(t)]αs(t)e−SD(t)−Sφ(t), (A.2)

Em(t) = C1(t)αs(t)e−SB(t)−SD(t)−Sφ(t). (A.3)

The above SB,D,φ are defined by

SB(t) = s(x1P
+
1 , b1) + 2

∫ t

1/b1

dµ′

µ′ γq(µ
′), (A.4)

SD(t) = s(x2P
+
2 , b3) + 2

∫ t

1/b2

dµ′

µ′ γq(µ
′), (A.5)

Sφ(t) = s(x3P
+
3 , b3) + s((1− x3)P+

3 , b3)

+ 2
∫ t

1/b3

dµ′

µ′ γq(µ
′), (A.6)

where the last terms of the above formulas are logarithms
from the renormalization of ultraviolet divergence. The
term s(Q, b), the so-called Sudakov factor, results from
summing up the double logarithms caused by a collinear
divergence and a soft divergence. The expression is given
by [10]

s(Q, b) =
∫ Q

1/b

dµ′

µ′

[{
2
3
(2γE − 1− log 2) + CF log

Q

µ′

}

× αs(µ′)
π

+
{
67
9

− π2

3
− 10

27
nf +

2
3
β0 log

γE

2

}

×
(
αs(µ′)
π

)2

log
Q

µ′

]
; (A.7)

γE = 0.57722 · · · is the Euler constant, and γq = αs/π is
the quark anomalous dimension.

The h’s in the decay amplitudes are given by perform-
ing a Fourier transformation on the transverse momenta
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kiT for the propagators of the virtual quark and gluon in
the hard part calculation; they result in

ha(x2, x3, b2, b3)

= (πi/2)2H1
0 (MB

√
x2x3b2)St(x3)

×
{
H1

0 (MB
√
x3b2)J0(MB

√
x3b3)θ(b2 − b3)

+(b2 ↔ b3)
}
, (A.8)

h(j)
a (x1, x2, x3, b1, b2)

=


K0(MB

√
Fjb1), for Fj ≥ 0,

πi
2
H(1)

0 (MB

√−Fjb1), for Fj < 0,




×
{πi
2
H(1)

0 (MB
√
x2x3b1)J0(MB

√
x2x3b2)θ(b1 − b2)

+(b1 ↔ b2)
}
, (A.9)

with the variables F1 = x2(x1 − x3), F2 = x2 + (1 −
x2)(x1 +x3), and H(1)

0 (z) = J0(z)+ iY0(z). The threshold
resummation form factor St(xi) is adopted from [19]:

St(x) =
21+2cΓ (3/2 + c)√

πΓ (1 + c)
[x(1− x)]c, (A.10)

where the parameter c = 0.3. This function is normalized
to unity. The hard scales t in the amplitudes are taken as
the largest energy scale in H to diminish the higher order
α2

s corrections:

t1a = max(MB
√
x3, 1/b2, 1/b3), (A.11)

t2a = max(MB
√
x2, 1/b2, 1/b3), (A.12)

t1m = max(MB

√
|F1|,MB

√
x2x3, 1/b1, 1/b2), (A.13)

t2m = max(MB

√
F2,MB

√
x2x3, 1/b1, 1/b2). (A.14)
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